

Date: Friday 10th of December 2021

Time range:

09⁰⁰-**16**⁵⁵

REEHUB PLUS / 1ST CROSS BORDER EVENT

"SMART CITY OPEN INNOVATION FORUM"

BARLETI INSTITUTE FOR RESEARCH AND DEVELOPMENT SUPPORTED BY:

Speaker:

Sandra Monteiro da Silva

Ass. Prof. at the Civil Engineering Department of the University of Minho

Title

Energy Renovation of Buildings

Environmental and cost life cycle analysis.

CITTÀ^{DI}AGNONE

The Importance of the Construction Sector - EU Building Stock Facts

Advantages of Energy Efficient Buildings

Added value for the renovated building

Direct benefits (energy use reduction, CO₂ emissions reduction, life cycle cost reduction ...)

Co-benefits (improve overall quality of the building; improving IEQ and users health and well-being; economic benefits, tackles energy poverty of families)

Macro-economic benefits and co-benefits

Direct benefits (Reduce energy imports ...) Co-benefits (improved health, less money spent on health, medicines ...)

Money spent in other things \rightarrow Stimulating economy

Universidade do Minho

Advantages of Energy Efficient Buildings

Smart Cities / Smart Buildings / Smart Owners

1st Reduce energy consumption (efficient lighting systems and appliances)

	2	³ - Ĥ -
Turn off lights when leaving a room	Switch to energy efficient appliances	Use LED lights
4	5	
Unplug devices when not in use	Keep thermostat at low temperature	Reduce water consumption
	8	9
Use smart automated devices	Switch to double glazing	Cook with the lid on
10		12 - Č C=
Use a smart meter to track usage	Wash at a cold temperature	Use solar powered devices

Universidade do Minho

Standby Energy Consumption

1st Reduce energy consumption (efficient lighting systems and appliances) 2nd Improve energy performance (passive measures → insulation, shading ...)

Universidade do Minho

1st

Reduce energy consumption (efficient lighting systems and appliances)

2nd Improve energy performance (passive measures \rightarrow insulation, shading ...)

3rd Select energy efficient and appropriately designed systems

1st Reduce energy consumption (efficient lighting systems and appliances) 2nd

Improve energy performance (passive measures → insulation, shading ...) 3rd Select energy efficient and appropriately designed systems

Case Study

ISIS

Characteristics of the building

Net area: 100 m²; Windows area: 15 m²; 3 bedrooms

Virtual residential building (typical from 1961 – 1990) Representing 44.5% of the buildings built until 2011

Porto Climate data

Universidade do Minho

Case Study

Properties of the building before and after each of the renovation scenarios

Properties of building	Before renovation (Maintenance)	Basic renovation (minimum legal requirements)	Cost-optimal renovation	n Zero Energy renovation	
Thermal transmittance, W/(m ² ·K)		· · · · ·			
U_{wall}	1.76	0.47	0.47	0.47	
U _{roof}	2.80	0.35	0.35	0.35	
U _{floor}	2.10	0.39	0.39	0.39	
$U_{\text{window (glass/frame)}}$	4.10	2.70	2.70	2.70	
U _{door}	2.31	0.49	0.49	0.49	
Linear thermal transmittance, W/(m·K)					
$\Psi_{wall/wall}$	0.50	0.40	0.40	0.40	
$\Psi_{ m roof/wall}$	0.70	0.70	0.70	0.70	
$\Psi_{ extsf{floor}/ extsf{wall}}$	0.70	0.50	0.50	0.50	
Ψwindow/wall	0.25	0.10	0.10	0.10	
Internal heat gains (heat from inhabitants, appliances, equipment, and lighting)	4.0 W/m ²				
Ventilation (air change rate)	0.94 ach	0.86 ach	0.86 ach	0.86 ach	
Heating system type and efficiency	Radiator (1.0)	Radiator (1.0)	HVAC (3.8)	HVAC (3.8)	
Cooling system type and efficiency	HVAC system (3.0)	HVAC system (3.0)	HVAC system (5.1)	HVAC system (5.1)	
DHW preparation system type and efficiency	Natural gas heater (0.89)	Solar thermal collectors and natural gas heater (0.89)	Solar thermal collectors and new heat pump (4.3)	Solar thermal collectors and new heat pump (4.3)	
Renewable energy sources		-			
Solar thermal collectors for DHW, m ²	-	2.60	2.79	2.79	
Solar panels for electricity production, m ²	-	-	0	12.9	

Research Methodology

The methodology is based on the analysis, for each scenario, of the:

- i) operational energy for heating, cooling, and production of DHW;
- ii) life cycle impacts, using a standardized LCA method (EN 15978:2012);
- iii) economic payback time (EPBT); and carbon emissions payback time (GPBT).

For the calculation of the energy needs the methodology of the Portuguese thermal regulation for residential buildings was followed, which is based on the quasi-steady state method (ISO 13790:2008).

Research Methodology

Quantification of the Whole Building Life Cycle Impacts

- Quantified in a bottom-up approach (i.e. from building components scale to whole assembly):
 - 1st Step: Quantification of the embodied impacts in the building components

Total embodied impacts in building components

Research Methodology

2nd Step: Quantification of the whole building life-cycle impacts

Energy performance

Results of energy simulations for the different scenarios

Proportion of building	Before renovation	Basic renovation (minimum	Cost-optimal	Zero Energy			
	(Maintenance)	legal requirements)	renovation	renovation			
Building's energy needs (net energy, without system losses), kWh/(m ² ·year)							
Space heating	134.52	54.14	54.14	54.14			
Space cooling	9.19	7.05	7.05	7.05			
Domestic hot water	23.77	23.77	21.40	21.40			
Delivered energy (energy use of technical systems with systems losses) net energy, kWh/(m ² ·year)							
Space heating	134.52	134.52 54.14		14.25			
Space cooling	3.06	2.53	1.38	1.38			
Domestic hot water	26.71	7.76	0.41	0.41			
Produced energy on site, kWh/(m ² ·year)							
Solar thermal collectors (heat)	0.00	14.49	19.54	19.54			
PV panels (electricity)	0.00	0.00	0.00	16.71 ⁽¹⁾			
Primary energy use, kWh _{PF} /(m ² ·year)							
Energy performance value, kWh _{PF} /(m ² ·year)	370.67	149.45	40.10	0.00			
		1 14 1.41					

⁽¹⁾ The PV system produces annually 1671 kWh, 289 kWh/year are used on-site and the remaining 1382 kWh/year are exported to the electric grid.

Life cycle costs

Results of energy simulations for the different scenarios

Lifetime cumulative energy costs of each renovation scenario

Environmental performance

Inventory of used building products

Inventory item	Before renovation (Maintenance)	Basic renovation (fulfils minimum legal requirements)	Cost-optimal renovation	Zero Energy renovation			
Lifetime material input (kg)							
Cement mortar		1900.00	1900.00	1900.00			
Ceramic tile		4375.00	4375.00	4375.00			
Expanded extruded polystyrene (XPS)	-	686.72	686.72	686.72			
Synthetic mortar	-	4786.20	4786.20	4786.20			
Water-based paint	164.16	164.16	164.16	164.16			
Lifetime windows renovation (m^2)							
PVC windows with double glazed glass, including shading devices (PVC shutters)	-	15.00	15.00	15.00			

Environmental performance

Annual equivalent **life cycle impacts per net floor area** and potential improvements resulting from each renovation scenario

Environmental indicator	Before renovation (Maintenance)	Basic reno minimum lega	vation (fulfils al requirements)	Cost-optimal renovation		Zero Energy renovation			
	Impacts (/m².year)	Impacts (/m².year)	Improvement (%)	Impacts (/m².year)	Improvement (%)	Impacts of the considered boundary (/m ² .year)	Benefits outside the system boundary	Overall impacts (/m².year)	Improvement (%)
ADP_elements	1,62E-02	1,41E-02	13%	1,04E-02	35%	1,47E-02	1,27E-03	1,34E-02	17%
ADP_FF	1,20E+05	5,96E+04	50%	1,84E+04	85%	1,94E+04	1,30E+04	6,40E+03	95%
GWP100a	9,06E+03	4,63E+03	49%	1,46E+03	84%	1,54E+03	9,93E+02	5,52E+02	94%
ODP	2,78E-03	1,39E-03	50%	2,24E-03	19%	2,26E-03	7,14E-05	2,19E-03	21%
POCP	2,83E+00	1,44E+00	49%	4,65E-01	84%	4,98E-01	3,17E-01	1,81E-01	94%
AP	6,82E+01	3,33E+01	51%	1,01E+01	85%	1,08E+01	7,85E+00	2,92E+00	96%
EP	1,71E+01	8,78E+00	49%	3,05E+00	82%	3,43E+00	1,97E+00	1,46E+00	91%
CED_NRE	1,29E+05	6,46E+04	50%	2,02E+04	84%	2,14E+04	1,41E+04	7,38E+03	94%
CED_TOT	1,52E+05	7,61E+04	50%	2,34E+04	85%	2,48E+04	1,69E+04	7,90E+03	95%

Lifetime Cumulative Global Warming Potential (GWP) of each renovation scenario

Environmental performance

Environmental performance

Lifetime Cumulative Energy Demand (CED_{TOT}) of each renovation scenario

The lifetime saved CED_{TOT} is Basic: 2 245 GJ (2.4 years) Cost-optimal: 3 834 GJ (1.5 years) Zero Energy: 4 203 GJ (1.5 years)

Environmental performance

Cumulative CED_{TOT} of each used solar system for a lifetime period of 20 years

Conclusions

Basic renovation (minimum requirements to fulfil the national thermal regulation) → renovation costs: 69% higher; annual energy needs: 60% reduction; payback time: 11 years; building's Cumulative Energy Demand reduction: 48%

Cost-optimal renovation →

renovation costs: 75% increase; annual energy needs: 89% reduction; payback time: 9 years; building's Cumulative Energy Demand reduction: 83%

Zero Energy renovation -

renovation costs: 78% increase; annual energy needs: 89% reduction; payback time: 10 years;

building's Cumulative Energy Demand reduction: 90%

Compared to the Maintenance scenario

